Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncologist ; 28(9): 825-e817, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196069

RESUMO

BACKGROUND: Hypofractionated stereotactic radiotherapy (hFSRT) is a salvage option for recurrent glioblastoma (GB) which may synergize anti-PDL1 treatment. This phase I study evaluated the safety and the recommended phase II dose of anti-PDL1 durvalumab combined with hFSRT in patients with recurrent GB. METHODS: Patients were treated with 24 Gy, 8 Gy per fraction on days 1, 3, and 5 combined with the first 1500 mg Durvalumab dose on day 5, followed by infusions q4weeks until progression or for a maximum of 12 months. A standard 3 + 3 Durvalumab dose de-escalation design was used. Longitudinal lymphocytes count, cytokines analyses on plasma samples, and magnetic resonance imaging (MRI) were collected. RESULTS: Six patients were included. One dose limiting toxicity, an immune-related grade 3 vestibular neuritis related to Durvalumab, was reported. Median progression-free interval (PFI) and overall survival (OS) were 2.3 and 16.7 months, respectively. Multi-modal deep learning-based analysis including MRI, cytokines, and lymphocytes/neutrophil ratio isolated the patients presenting pseudoprogression, the longest PFI and those with the longest OS, but statistical significance cannot be established considering phase I data only. CONCLUSION: Combination of hFSRT and Durvalumab in recurrent GB was well tolerated in this phase I study. These encouraging results led to an ongoing randomized phase II. (ClinicalTrials.gov Identifier: NCT02866747).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radiocirurgia , Reirradiação , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Resultado do Tratamento , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/radioterapia , Radiocirurgia/efeitos adversos , Citocinas
2.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201456

RESUMO

GSCs play an important role in GBM recurrence. Understanding the resistance mechanisms in these cells is therefore crucial for radiation therapy optimization. In this study, using patient-derived GSCs, we demonstrate that GDF15, a cytokine belonging to the TGF-ß superfamily, is regulated by irradiation (IR) and the transcription factor WWTR1/TAZ. Blocking WWTR1/TAZ using specific siRNAs significantly reduces GDF15 basal expression and reverses the upregulation of this cytokine induced by IR. Furthermore, we demonstrate that GDF15 plays an important role in GSC radioresistance. Targeting GDF15 expression by siRNA in GSCs expressing high levels of GDF15 sensitizes the cells to IR. In addition, we also found that GDF15 expression is critical for GSC spheroid formation, as GDF15 knockdown significantly reduces the number of GSC neurospheres. This study suggests that GDF15 targeting in combination with radiotherapy may be a feasible approach in patients with GBM.

3.
Cancers (Basel) ; 11(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909436

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor in adults and is known to be particularly aggressive and resistant to anti-cancer therapies, mainly due to the presence of GBM stem cells (GBMSC). By in vitro approaches supported by analysis from patients' databases, we determined how α6-integrin and Fibroblast Growth Factor Receptor 1 (FGFR1) work in concert to regulate proliferation and stemness of GBMSC. We showed that α6-integrin regulates the expression of FGFR1 and its target gene Fokhead Box M1 (FOXM1) via the ZEB1/YAP1 transcription complex. These results were in accordance with the positive correlation observed in GBM between α6-integrin expression and its target genes ZEB1/YAP1, FGFR1, and FOXM1 in the databases, TCGA and Rembrandt. In addition, the clinical data demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin, ZEB1/YAP1, FGFR1 and FOXM1, have a significantly shorter overall survival. In vitro, we observed a similar decrease in the expression of stemness-related factors, neurospheres forming capacity, as well as spheroids growth when α6-integrin or FGFR1 was blocked individually with specific siRNA, whereas the combination of both siRNA led to a significantly higher inhibition of spheres formation. These data suggest that co-administration of anti-FGFR1 and anti-α6-integrin could provide an improved therapeutic response in GBMSC.

4.
Cancer Immunol Res ; 7(2): 321-334, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30610060

RESUMO

Macrophage-mediated cytotoxicity is controlled by surface receptor expression and activation. Despite the numerous studies documenting the role of macrophage C-type lectin receptors (CLR) in pathogen elimination, little is known about their contribution to antitumor responses. Here, we report that IL13 inhibits T-cell lymphoma and ovarian adenocarcinoma development in tumor-bearing mice through the conversion of tumor-supporting macrophages to cytotoxic effectors, characterized by a CLR signature composed of dectin-1 and mannose receptor (MR). We show that dectin-1 and MR are critical for the recognition of tumor cells through sialic acid-specific glycan structure on their surface and for the subsequent activation of macrophage tumoricidal response. Finally, we validated that IL13 antitumor effect mediated by dectin-1 and MR overexpression on macrophages can extend to various types of human tumors. Therefore, these results identify these CLRs as potential targets to promote macrophage antitumor response and represent an attractive approach to elicit tumor-associated macrophage tumoricidal properties.


Assuntos
Interleucina-13/genética , Lectinas Tipo C/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Lectinas de Ligação a Manose/genética , Neoplasias/etiologia , Neoplasias/metabolismo , Receptores de Superfície Celular/genética , Animais , Arginase/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Interleucina-13/metabolismo , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Knockout , Ácido N-Acetilneuramínico/metabolismo , Necrose/genética , Necrose/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
Oncotarget ; 9(60): 31637-31649, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30167084

RESUMO

Glioblastoma are known to be aggressive and therapy-resistant tumors, due to the presence of glioblastoma stem cells inside this heterogeneous tumor. We investigate here the involvement of FGFR1 in glioblastoma stem-like cells (GSLC) radioresistance mechanisms. We first demonstrated that the survival after irradiation was significantly diminished in FGFR1-silenced (FGFR1-) GSLC compared to control GSLC. The transcriptome analysis of GSLCs FGFR1(-) showed that FOX family members are differentially regulated by FGFR1 inhibition, particularly with an upregulation of FOXN3 and a downregulation of FOXM1. GSLC survival after irradiation was significantly increased after FOXN3 silencing and decreased after FOXM1 inhibition, showing opposite effects of FGFR1/FOX family members on cell response to ionizing radiation. Silencing FGFR1 or FOXM1 downregulated genes involved in mesenchymal transition such as GLI2, TWIST1, and ZEB1 in glioblastoma stem-like cells. It also dramatically reduced GSLC migration. Databases analysis confirmed that the combined expression of FGFR1/FOXM1/MELK/GLI2/ZEB1/TWIST1 is significantly associated with patients overall survival after chemo-radiotherapy treatment. All these results, associated with our previous conduced ones with differentiated cells, clearly established that FGFR1-FOXM1 dependent glioblastoma stem-like cells radioresistance pathway is a central actor of GBM treatment resistance and a key target to inhibit in the aim to increase the sensitivity of GBM to the radiotherapy.

6.
Cell Death Dis ; 9(9): 872, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158599

RESUMO

Radiotherapy is the cornerstone of glioblastoma (GBM) standard treatment. However, radioresistance of cancer cells leads to an inevitable recurrence. In the present study, we showed that blocking α6-integrin in cells derived from GBM biopsy specimens cultured as neurospheres, sensitized cells to radiation. In cells downregulated for α6-integrin expression, we observed a decrease in cell survival after irradiation and an increase in radio-induced cell death. We also demonstrated that inhibition of α6-integrin expression affects DNA damage checkpoint and repair. Indeed, we observed a persistence of γ-H2AX staining after IR and the abrogation of the DNA damage-induced G2/M checkpoint, likely through the downregulation of the checkpoint kinase CHK1 and its downstream target Cdc25c. We also showed that α6-integrin contributes to GBM radioresistance by controlling the expression of the transcriptional network ZEB1/OLIG2/SOX2. Finally, the clinical data from TCGA and Rembrandt databases demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin and its targets, CHK1, ZEB1, OLIG2 and SOX2, have a significantly shorter overall survival. Our study suggest that α6-integrin is an attractive therapeutic target to overcome radioresistance of GBM cancer cells.


Assuntos
Neoplasias Encefálicas/genética , Dano ao DNA/genética , Glioblastoma/genética , Cadeias alfa de Integrinas/genética , Tolerância a Radiação/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quinase 1 do Ponto de Checagem/genética , Regulação para Baixo/genética , Fase G2/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fator de Transcrição 2 de Oligodendrócitos/genética , Fatores de Transcrição SOXB1/genética , Transcrição Gênica/genética , Fosfatases cdc25/genética
7.
Oncotarget ; 8(35): 58587-58600, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938581

RESUMO

A high percentage of advanced rectal cancers are resistant to radiation. Therefore, increasing the efficacy of radiotherapy by targeting factors involved in radioresistance seems to be an attractive strategy. Here we demonstrated that the pro-hormone progastrin (PG), known to be over-expressed in CRC, and recognized as a pro-oncogenic factor, is a radioresistance factor that can be targeted to sensitize resistant rectal cancers to radiations. First, we observed an increase in PG mRNA expression under irradiation. Our results also demonstrated that down-regulating PG mRNA expression using a shRNA strategy, significantly increases the sensitivity to irradiation (IR) in a clonogenic assay of different colorectal cancer cell lines. We also showed that the combination of PG gene down-regulation and IR strongly inhibits tumours progression in vivo. Then, we demonstrated that targeting PG gene radiosensitizes cancer cells by increasing radio-induced apoptosis shown by an increase in annexin V positive cells, caspases activation and PARP cleavage. We also observed the up-regulation of the pro-apoptotic pathway, JNK and the induction of the expression of pro-apoptotic factors such as BIM. In addition, we demonstrated in this study that inhibition of PG gene expression enhances radiation-induced DNA damage. Our data also suggest that, in addition to increase radio-induced apoptosis, targeting PG gene also leads to the inhibition of the survival pathways, AKT and ERK induced by IR. Taken together, our results highlight the role of PG in radioresistance and provide a preclinical proof of concept that PG represents an attractive target for sensitizing resistant rectal tumours to irradiation. .

8.
Cancer Res ; 76(10): 3036-44, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26896280

RESUMO

FGF2 signaling in glioblastoma induces resistance to radiotherapy, so targeting FGF2/FGFR pathways might offer a rational strategy for tumor radiosensitization. To investigate this possibility, we evaluated a specific role for FGFR1 in glioblastoma radioresistance as modeled by U87 and LN18 glioblastomas in mouse xenograft models. Silencing FGFR1 decreased radioresistance in a manner associated with radiation-induced centrosome overduplication and mitotic cell death. Inhibiting PLCγ (PLCG1), a downstream effector signaling molecule for FGFR1, was sufficient to produce similar effects, arguing that PLCγ is an essential mediator of FGFR1-induced radioresistance. FGFR1 silencing also reduced expression of HIF1α, which in addition to its roles in hypoxic responses exerts an independent effect on radioresistance. Finally, FGFR1 silencing delayed the growth of irradiated tumor xenografts, in a manner that was associated with reduced HIF1α levels but not blood vessel alterations. Taken together, our results offer a preclinical proof of concept that FGFR1 targeting can degrade radioresistance in glioblastoma, a widespread problem in this tumor, prompting clinical investigations of the use of FGFR1 inhibitors for radiosensitization. Cancer Res; 76(10); 3036-44. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfolipase C gama/metabolismo , Tolerância a Radiação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Apoptose/efeitos da radiação , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Proliferação de Células/efeitos da radiação , Centrossomo/efeitos da radiação , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Nus , Mitose/efeitos da radiação , Fosfolipase C gama/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Anticancer Agents Med Chem ; 11(9): 891-903, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21707483

RESUMO

Drug resistance represents a serious barrier to the successful treatment of hematological malignancies. In leukemias, resistance mechanisms that involve membrane-resident proteins belonging to the ABC (ATP-binding cassette) transporter protein family are of particular interest, wherein enhanced expression is often associated with poor prognosis and frequent in relapsed or refractory disease. These proteins reduce the intracellular concentration of antitumor agents, greatly diminishing clinical efficacy. Research in this area has been directed at the design of agents, "pump antagonists", to overcome the effluxing capacity of drug transporters; however, this direction has had limited clinical success. An allied function of ABC transporters like P-glycoprotein (P-gp) is glycolipid trafficking, an area that has not been explored from a therapeutic standpoint. In this capacity, it turns out that glycolipid synthesis can be attenuated by pump antagonists; this is perhaps an adventitious property of P-gp. Recent research in the area of lipid metabolism, specifically ceramide and glycolipids, has provided insight into the function of glycosphingolipids in multidrug resistance and in the action of chemotherapy. This review is intended to bring together those aspects of glycosphingolipid metabolism that might be leveraged to enhance the therapeutic performance of ceramide and to discuss how ABC transporters like P-gp might be targeted to potentiate and magnify ceramide-driven proapoptotic cascades.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Esfingolipídeos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Ceramidas/metabolismo , Humanos
10.
Prostate ; 71(10): 1064-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21557271

RESUMO

BACKGROUND: The purpose of this study was to determine whether the therapeutic efficacy of fenretinide (4-HPR), a ceramide-generating anticancer agent, could be enhanced in prostate cancer cells by inclusion of a novel synthetic acid ceramidase (AC) inhibitor, DM102, a pivaloylamide of a 2-substituted aminoethanol. In prostate cancer, AC plays a role in progression and resistance to chemotherapy. METHODS: PC-3 and DU 145 hormone-refractory human prostate cancer cell lines were used. Cells were exposed to 4-HPR, DM102, and combinations; viability, apoptosis, cell migration, ceramide metabolism, and levels of reactive oxygen species (ROS) were assessed. RESULTS: Single agent 4-HPR and DM102 (2.5-10 µM) were weakly cytotoxic; however, combinations synergistically decreased cell viably to as low as 1.5% of control. N-oleoylethanolamine (NOE), a frequently employed AC inhibitor, was not effective in producing synergy. The 4-HPR/DM102 regimen enhanced caspase activity and increased [(3) H](dihydro)ceramide and ROS levels 6- and 30-fold over control, respectively. The antioxidant vitamin E, but not the de novo ceramide synthesis inhibitor myriocin, partially rescued cells from 4-HPR/DM102 cytotoxicity. The 4-HPR/DM102 combination also elicited synergistic cytotoxicity in DU 145 cells, another human hormone-refractory prostate cancer cell line. CONCLUSION: This study shows that 4-HPR cytotoxicity is enhanced in a synergistic fashion by inclusion of the AC inhibitor DM102, by a mechanism that enlists generation of ROS, and thus provides a system to raise 4-HPR therapeutic potential. The role of ceramide however in the cytotoxic response is not clear, as blocking ceramide generation failed to rescue PC-3 cells from 4-HPR/DM102 cytotoxicity.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidases/antagonistas & inibidores , Ácidos Graxos Insaturados/farmacologia , Fenretinida/farmacologia , Western Blotting , Caspases/metabolismo , Linhagem Celular Tumoral , Interações Medicamentosas , Endocanabinoides , Etanolaminas/farmacologia , Humanos , Ácidos Oleicos , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/farmacologia
11.
Exp Cell Res ; 317(12): 1736-45, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21396934

RESUMO

P-glycoprotein (P-gp) antagonists inhibit ceramide metabolism at the juncture of glycosylation. The purpose of this study was to test whether targeting P-gp would be a viable alternative to targeting glucosylceramide synthase (GCS) for enhancing ceramide cytotoxicity. A2780 wild-type, and multidrug-resistant 2780AD and NCI/ADR-RES human ovarian cancer cell lines and the cell-permeable ceramide analog, C6-ceramide (C6-cer), were employed. Compared to P-gp-poor A2780 cells, P-gp-rich 2780AD cells converted 3.7-fold more C6-cer to nontoxic C6-glucosylceramide (C6-GC), whereas cell-free GCS activities were equal. 2780AD cells displayed resistance to C6-cer (10 µM) that was reversed by inclusion of the P-gp antagonist tamoxifen (5 µM) but not by inclusion of a GCS inhibitor. Co-administration of C6-cer and P-gp antagonists was also effective in NCI/ADR-RES cells. For example, C6-cer, VX-710 (Biricodar), and cyclosporin A (cyc A) exposure resulted in viabilities of ~90% of control; however, C6-cer/VX-710 and C6-cer/cyc A additions were synergistic and resulted in viabilities of 22% and 17%, respectively. Further, whereas C6-ceramide and cyc A imparted 1.5- and 0-fold increases in caspase 3/7 activity, the combination produced a 3.5-fold increase. Although the upstream elements of cell death have not been elucidated, the novel C6-ceramide/P-gp antagonist combination merits further study and assessment of clinical translational potential.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Ceramidas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Tamoxifeno/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Hormonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Western Blotting , Sinergismo Farmacológico , Feminino , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
12.
Int J Oncol ; 37(6): 1591-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21042729

RESUMO

The role of glucosylceramide synthase (GCS) in regulating ceramide-induced apoptosis has been widely studied. The purpose of this investigation was to evaluate the role of P-glycoprotein (P-gp) in regulating ceramide cytotoxicity by using C6-ceramide. To accomplish this, we employed HeLa cells with conditional expression of the multidrug resistance gene 1/P-gp. HeLa cells expressing P-gp (P-gp/on cells) challenged with [14C]C6-ceramide (6 µM), synthesized 4.5-fold the amount of C6-glucosylceramide (GC) compared to HeLa cells with suppressed expression of P-gp (P-gp/off cells), whereas the generated levels of C6-sphingomyelin were almost equal (33 and 29% of intracellular 14C, respectively). Tamoxifen, a P-gp antagonist, decreased the C6-GC levels from 3.5-1.0% in the P-gp/off and from 17-2.8% of the total lipid 14C levels in the P-gp/on cells. Tamoxifen did not inhibit cell-free C6-GC synthesis in the P-gp/off or P-gp/on homogenates. However, a specific GCS inhibitor, ethylenedioxy-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (ethylenedioxy-P4), blocked synthesis by 90%. In the cytotoxicity assays, the P-gp/off cells were sensitive to C6-ceramide and the P-gp/on cells were resistant. Resistance to C6-ceramide in the P-gp/on cells was reversed by tamoxifen but not by ethylenedioxy-P4. Experiments in another cervical cancer model showed that multidrug-resistant P-gp-rich KB-V1 cells synthesized 3-fold more C6-GC from C6-ceramide than the parental, P-gp-poor KB-3-1 cells, and whereas tamoxifen had no effect on the C6-GC synthesis in the KB-3-1 cells, it inhibited synthesis by 70% in the KB-V1 cells. This study demonstrates that P-gp potentiates C6-ceramide glycosylation and if antagonized augments C6-ceramide sensitivity, both features previously ascribed to GCS. We propose that P-gp can be an effective target for enhancing short-chain ceramide cytotoxicity in the treatment of drug-resistant cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Carcinoma/genética , Ceramidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias do Colo do Útero/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antineoplásicos/farmacologia , Carcinoma/patologia , Sobrevivência Celular , Ciclosporina/farmacologia , Citotoxinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HeLa , Humanos , Tamoxifeno/farmacologia , Neoplasias do Colo do Útero/patologia , Verapamil/farmacologia
13.
Biochem Pharmacol ; 80(3): 308-15, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20385104

RESUMO

Due to recent use of short-chain ceramides in preclinical studies, we characterized C6-ceramide metabolism in cancer cell lines and assessed metabolic junctures for enhancing efficacy. MDA-MB-231 breast cancer cells decreased the amount of C6-ceramide metabolized to C6-sphingomyelin (C6-SM) and increased the amount metabolized to C6-glucosylceramide (C6-GC) in response to increasing concentrations. A similar trend was seen in DU-145 (prostate cancer), PANC-1 (pancreatic cancer), and LoVo (colorectal cancer) cells. KG-1 leukemia cells favored C6-SM synthesis at low (0.6muM) and high-dose (12muM) C6-ceramide. Partnering C6-ceramide with tamoxifen, a P-glycoprotein antagonist that impedes ceramide glycosylation, was an effective regimen for enhancing cytotoxicity in cells. Experiments to assess the mechanism of cell death using KG-1 cells showed that tamoxifen inhibited synthesis of C6-GC and C6-SM from C6-ceramide by 80% and 50%, respectively, which was accompanied by enhanced apoptosis. Radiolabeling of KG-1 cells with [(3)H]palmitic acid produced a 2-fold increase in (3)H-long-chain ceramides when unlabeled C6-ceramide was added and a 9-fold increase when C6-ceramide and tamoxifen were added. The increase in (3)H-palmitate radiolabeling of long-chain ceramides was blocked by inclusion of a ceramide synthase inhibitor; however, inhibiting synthesis of long-chain ceramide did not rescue cells. These studies show that tamoxifen enhances the apoptotic effects of C6-ceramide. The proposed mechanism involves blocking short-chain ceramide anabolism to favor hydrolysis and generation of sphingosine. We propose that use of tamoxifen and other P-glycoprotein antagonists can be an effective means for enhancing cytotoxic potential of short-chain ceramides in the treatment of cancer.


Assuntos
Ceramidas/metabolismo , Ceramidas/uso terapêutico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Ceramidas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tamoxifeno/química , Tamoxifeno/metabolismo , Tamoxifeno/uso terapêutico
14.
Mol Cancer Ther ; 7(9): 2967-76, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18790777

RESUMO

Fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] is cytotoxic in many cancer cell types. Studies have shown that elevation of ceramide species plays a role in 4-HPR cytotoxicity. To determine 4-HPR activity in a multidrug-resistant cancer cell line as well as to study ceramide metabolism, MCF-7/AdrR cells (redesignated NCI/ADR-RES) were treated with 4-HPR and sphingolipids were analyzed. TLC analysis of cells radiolabeled with [3H]palmitic acid showed that 4-HPR elicited a dose-responsive increase in radioactivity migrating in the ceramide region of the chromatogram and a decrease in cell viability. Results from liquid chromatography/electrospray tandem mass spectrometry revealed large elevations in dihydroceramides (N-acylsphinganines), but not desaturated ceramides, and large increases in complex dihydrosphingolipids (dihydrosphingomyelins, monohexosyldihydroceramides), sphinganine, and sphinganine 1-phosphate. To test the hypothesis that elevation of sphinganine participates in the cytotoxicity of 4-HPR, cells were treated with the sphingosine kinase inhibitor d-erythro-N,N-dimethylsphingosine (DMS), with and without 4-HPR. After 24 h, the 4-HPR/DMS combination caused a 9-fold increase in sphinganine that was sustained through +48 hours, decreased sphinganine 1-phosphate, and increased cytotoxicity. Increased dihydrosphingolipids and sphinganine were also found in HL-60 leukemia cells and HT-29 colon cancer cells treated with 4-HPR. The 4-HPR/DMS combination elicited increased apoptosis in all three cell lines. We propose that a mechanism of 4-HPR-induced cytotoxicity involves increases in dihydrosphingolipids, and that the synergy between 4-HPR and DMS is associated with large increases in cellular sphinganine. These studies suggest that enhanced clinical efficacy of 4-HPR may be realized through regimens containing agents that modulate sphingoid base metabolism.


Assuntos
Ceramidas/metabolismo , Fenretinida/farmacologia , Neoplasias/patologia , Esfingosina/análogos & derivados , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Esfingolipídeos/análise , Esfingosina/farmacologia , Fatores de Tempo
15.
FASEB J ; 22(7): 2541-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18245173

RESUMO

Advanced cancers acquire resistance to chemotherapy, and this results in treatment failure. The cellular mechanisms of chemotherapy resistance are not well understood. Here, for the first time, we show that ceramide contributes to cellular resistance to doxorubicin through up-regulating the gene expression of glucosylceramide synthase (GCS). Ceramide, a cellular lipid messenger, modulates doxorubicin-induced cell death. GCS catalyzes ceramide glycosylation, converting ceramide to glucosylceramide; this process hastens ceramide clearance and limits ceramide-induced apoptosis. In the present study, we evaluated the role of the GCS gene in doxorubicin resistance using several paired wild-type and drug-resistant (doxorubicin-selected) cancer cell lines, including breast, ovary, cervical, and colon. GCS was overexpressed in all drug-resistant counterparts, and suppressing GCS overexpression using antisense oligonucleotide restored doxorubicin sensitivity. Characterizing the effect mechanism showed that doxorubicin exposure increased ceramide levels, enhanced GCS expression, and imparted cellular resistance. Exogenous C(6)-ceramide and sphingomyelinase treatments mimicked the influence of doxorubicin on GCS, activating the GCS promoter and up-regulating GCS gene expression. Fumonisin B(1), an inhibitor of ceramide synthesis, significantly suppressed doxorubicin-up-regulated GCS expression. Promoter truncation, point mutation, gel-shift, and protein-DNA ELISA analysis showed that transcription factor Sp1 was essential for ceramide-induced GCS up-regulation. These data indicate that ceramide-governed GCS gene expression drives cellular resistance to doxorubicin.


Assuntos
Ceramidas/fisiologia , Doxorrubicina/toxicidade , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glucosiltransferases/genética , Adenocarcinoma , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Oligonucleotídeos Antissenso/farmacologia
16.
Biochim Biophys Acta ; 1771(12): 1407-17, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18035065

RESUMO

In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral/fisiologia , Ceramidas/metabolismo , Regulação da Expressão Gênica , Glucosilceramidas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Neoplasias da Mama/metabolismo , Ceramidas/química , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Glucosilceramidas/química , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Humanos , Regulação para Cima
17.
Biochim Biophys Acta ; 1758(12): 2096-103, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17010304

RESUMO

Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.


Assuntos
Resistência a Medicamentos , Glicoesfingolipídeos/fisiologia , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Humanos , Lipídeos/fisiologia , Neoplasias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...